CMBO 10 - Orthèses et prothèses

La marche humaine Biomécanique Théorie Technologie orthétique/ prothétique Andres Yves

Andres Yves
Benz-Negele Anika

Petit tour de présentation...

Anika Maître technicienne orthopédiste diplômée

Direction de secteur chez Negele Orthonädie

Yves

OSM/MBO

Maître technicien orthopédiste diplômé

Programme du cours

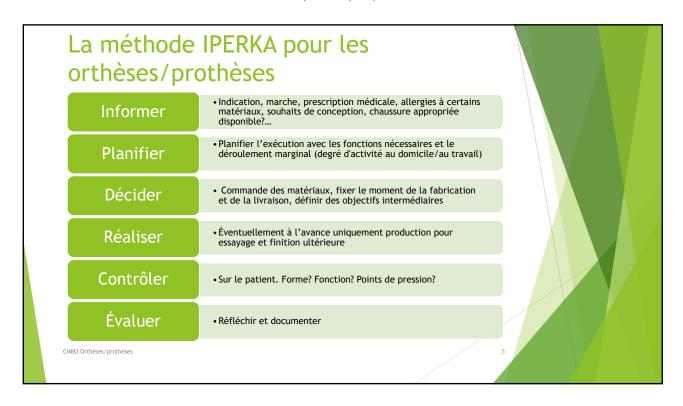
Jour 1

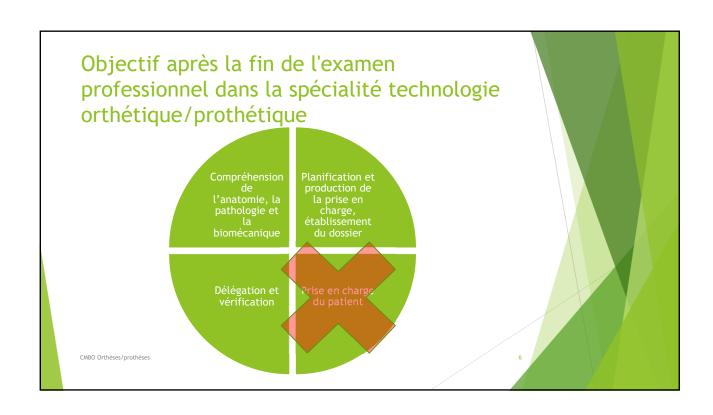
- Petit tour de présentation
- ▶ IPERKA
- La marche humaine
- ▶ Pathologies de la marche humaine
- Biomécanique
- Orthèses
- Prothèses

Jour 2

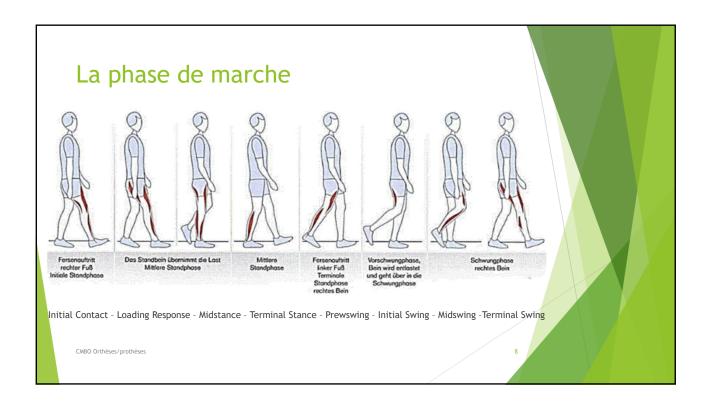
- ▶ Diverses techniques de confection
- Protection au travail
- Exemples de cas de technologie orthétique et prothétique, science des matériaux correspondante
- Reproductibilité et dossier d'atelier
- ► Répartition des tâches et discussion
- Présentation de certaines étapes du travail CMBO Orthèses/prothèses

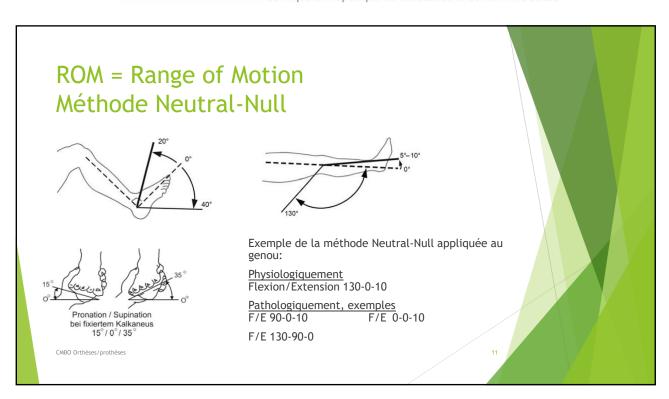
Jours 3 à 5


- Pratique à l'aide de tâches préparées à l'avance
- ► Échange des dossiers d'atelier


Théorie finale

- Discussion finale des moyens auxiliaires terminés
- Articles semi-fabriqués versus confection sur mesure
- Bases tarifaires




La marche humaine Pathologies de la marche Biomécanique

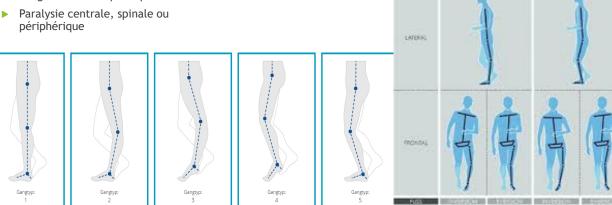
Amortisseurs naturels des chocs	Capitonnage du talon, voûte longitudinale, flexion du genou, ménisques, abaissement de la hanche, mouvement de ressort de l'articulation sacro-iliaque (=nutation), ligaments, forme en S de la colonne vertébrale, liquide céphalo-rachidien	
Travail musculaire excentrique	Dynamique négatif, origine et insertion du muscle s'éloignent, le muscle s'allonge, "extension"	
Travail musculaire concentrique	Dynamique positif, origine et insertion du muscle se rapprochent, raccourcissement du muscle (amortissement de choc), "flexion"	
Travail musculaire isométrique	Stabilité de la posture, statique, variations de tension intramusculaires	
Central Pattern Generator	Générateur musculaire central, des programmes moteurs sont sauvegardés, des muscles sont activés/inhibés de façon antagoniste	
Fonction Rocker	Heel Rocker = talon rond Ancle Rocker = articulation tibio-tarsienne Forefoot Rocker = déroulement de l'avant-pied	
moteurs fonctionnent plus to	enfance: des liaisons synaptiques se créent, des programmes ard de façon inconsciente ut au long de la vie, contrôle permanent par des	9

Vocabula	ire	
Biologie	Enseignement de la nature vivante	
Mécanique	Partie de la physique, notamment enseignement de la dynamique avec, pour sous-domaines, la cinétique, la statique et la cinématique	
Cinétique	Forces d'inertie qui résultent de la combinaison de la masse corporelle et du mouvement	
Statique	Équilibre des forces agissant sur le corps au repos	
Cinématique	Mouvements d'un corps sans prise en considération de la cause du mouvement (force)	
Biomécanique	Recherche, enseignement et utilisation de lois mécaniques dans la nature vivante (par ex. soins de réhabilitation, orthétiques et prothétiques sur le corps humain)	

État du muscle selon Janda Pas de contraction musculaire détectable: 0% de force musculaire Réaction détectable, ne suffit pas pour un mouvement: environ 10% de 1 force musculaire 2 Mouvement de pleine amplitude, sans travail contre la pesanteur, c.-à-d. en position horizontale: environ 25% de force musculaire 3 Mouvement de pleine amplitude, contre la pesanteur, sans résistance additionnelle de l'extérieur: environ 50% de force musculaire Mouvement de pleine amplitude contre une résistance légère à modérée: environ 75% de force musculaire 5 Mouvement de pleine amplitude contre une forte résistance extérieure: 100% de la force musculaire physiologique CMBO Orthèses/prothèses

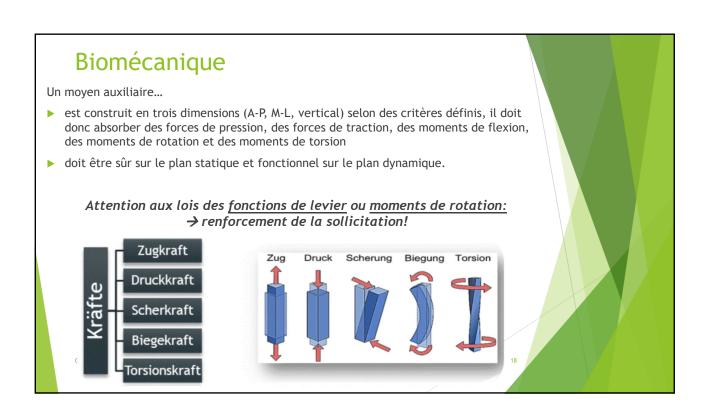
Analyse de la marche

- Facteurs qui influencent la marche chez l'être humain en bonne santé: anatomie, poids, répartition des masses, inhibition par des tissus (vêtements), circonstances de vie, humeur du moment, courbatures, stress, insécurité, nature du sol (glissant, obstacles), chaussures, rythme imposé (par ex. tapis roulant), trouble de l'équilibre
- Évaluation visuelle de la démarche, éventuellement assistée par vidéo (ralenti), évaluer à chaque fois une seule jambe, remplir le questionnaire d'évaluation
- Écartement, longueur du pas, rotation du pied/du genou, vitesse (mètres par seconde), cadence (pas par minute), balancement des bras, orientation de l'unité passager sur le locomoteur, angle articulaire,...


Le but de la marche est de consommer aussi peu d'énergie que possible La modulation par le corps veille à ce que le centre de gravité du corps ne s'écarte que peu des lignes droites (de 2 cm vers l'axe vertical et horizontal) Cela signifie (du point de vue de la jambe de référence), lors de la marche du sujet sain:

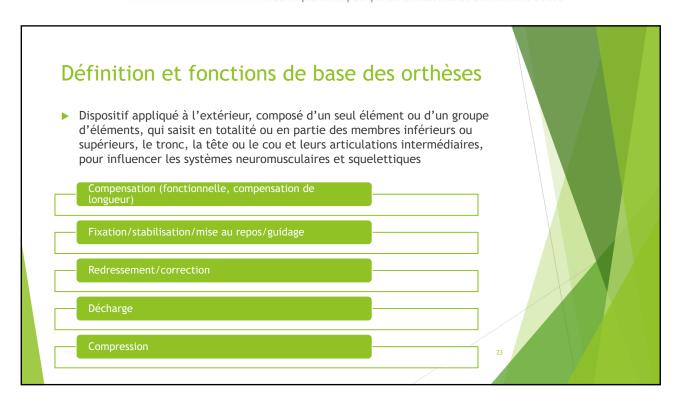
Tous les muscles travaillent en mode excentrique! Exemple: Le muscle quadriceps fémoral ne s'étend pas, il freine la flexion

Pathologies de la marche naturelle


- Déséquilibre (neuro)musculaire
- par ex. des suites d'une apoplexie, d'une tumeur, cardiopulmonaire, musculo-squelettique, posttraumatique, erreur opératoire, congénital ou idiopathique
- Faiblesse du redresseur du pied
- **Amputations**
- Contractures, raccourcissements

CMBO 10 16. - 17.01.2019 8

Avancement de l'axe de déroulement	En lien avec la butée d'extension dorsale = sécurité du genou et allongement de la longueur du pas	
Recul de l'axe de déroulement	Longueur de pas plus courte; en lien avec le DE-Anschlag = moins de retard du mouvement du genou	
Construction du talon rigide/déplacée vers l'arrière	Contact plus rapide de tout le pied, flexion plus rapide du genou	
Déplacement vers l'avant de l'articulation de la cheville	Retard de la possibilité de mouvement dans l'articulation tibio-tarsienne, extension en douceur du genou/stabilité du genou	
Butée d'extension dorsale	Extension du genou, plutôt abrupte	
Butée d'extension dorsale et articulation du genou bloquée	Extension de la hanche	
Longue semelle, semelle rigide	Stabilité du genou	
Ressort de l'articulation libre du genou	Stabilité du genou, contrôle de la phase d'oscillation	
Déplacement vers l'arrière de l'articulation du genou, avec butée d'extension dorsale	Stabilité du genou	



Questions de répétition de ma part... ©

- ▶ Quelles sont les incidences d'une semelle rigide sur le genou?
- Quel est l'effet sur le genou d'un Anschlag dorsal dans l'articulation tibiotarsienne?
- ▶ Pour un état musculaire de 4 selon Janda, quel % de l'activité musculaire peut-on escompter?
- Quels degrés d'activité distingue-t-on en technique orthopédique?
- Que signifie l'abréviation ROM? Avec quelle méthode peut-on l'analyser?
- Quel type de talon influence le genou de façon à ce que celui-ci se fléchisse plus rapidement?

CMBO Orthèses/prothèses

Orthèses de décharge

«Appareil d'Allgöwer» pour décharger le talon du pied

Décharge de l'ulcère sous la plante Partie de la charge assumée par le genou/la cuisse

CMBO Orthèses/prothèses

27

Orthèses de compression

Bandages pour divers problèmes

CMBO Orthèses/prothèses

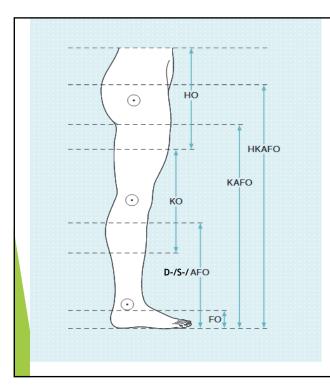
2

Technologie orthétique: Autant que nécessaire, aussi peu que possible...

Devise: «Ce qui dépasse peut être découpé» En principe:

<u>Dispositifs étendus:</u> en cas de fortes malpositions ou de nombreuses parties molles lâches, désavantage: atrophie plus importante

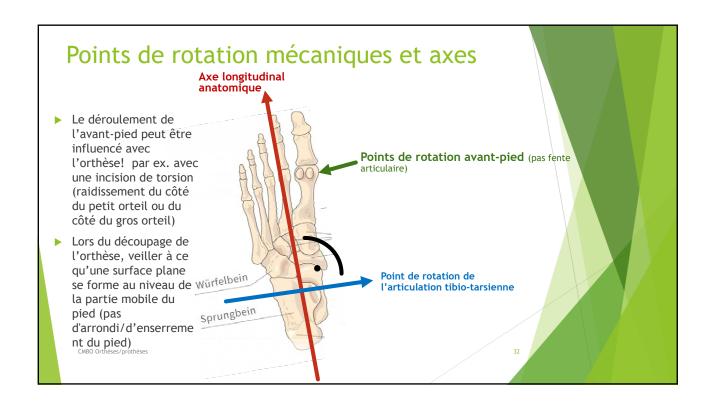
 $\frac{\textit{Petits dispositifs/parties libres}\text{:} \textit{ moins de poids, moins de transpiration, pour cela moins de surface = plus de points de pression...} \\ \textit{Druck (p)} = \frac{\textit{Kraft (F_n)}}{\textit{Fläche (A)}}$



- Si possible, ne pas altérer la partie de l'appareil locomoteur qui fonctionne! Ne pas contraindre à l'inactivité la musculature existante. Exemples négatifs lors d'une immobilisation complète:
 - Atrophie musculaire/osseuse
 - Contractures par collage de la capsule, perturbation de l'alimentation du cartilage
 - Trouble circulatoire (absence de pompe musculaire), risque de thrombose (bas de compression!)
 - Mauvaise cicatrisation

CMBO Orthèses/prothèses

29

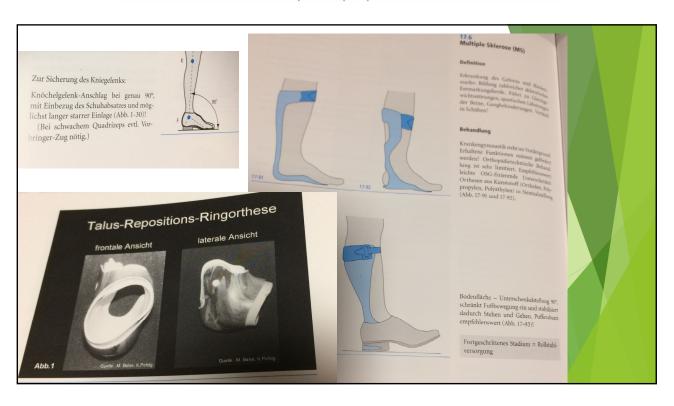


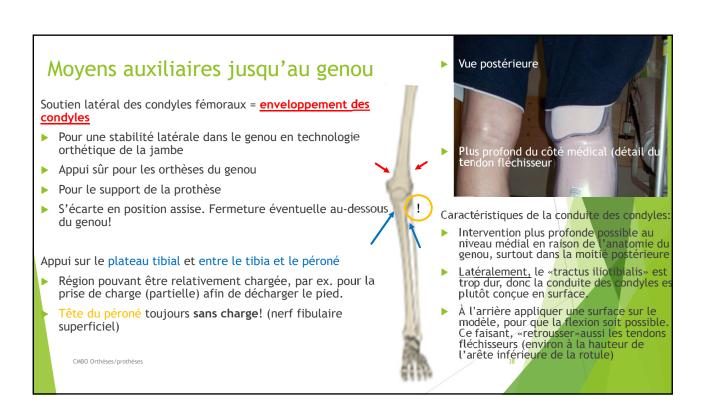
Die globale Vernetzung hat sich auch im medizinisch-technischen Sektor durchgesetzt. Um international mit den gleichen Begriffen zu arbeiten, haben sich die Abkürzungen der englischen Ausdrücke für die unterschiedlichen Typen von Orthesen durchgesetzt.

Diese werden bereits in vielen Ländern in den entsprechenden Versorgungs- bzw. Hilfsmittellisten verwendet. In der nebenstehenden Übersicht werden nur die für die Orthesen der unteren Extremität gebräuchlichen Abkürzungen aufgeführt, sie sind aber für den gesamten Bereich des Bewegungsapparates üblich.

Orthesentypen der unteren Extremität

но	Hip Orthosis Hüftorthese
	Hip-Knee-Ankle-Foot Orthosis
HKAFO	Hüft-übergreifende Ganzbeinorthese, reziproke Gehorthesen (RGO)
KAFO	Knee-Ankle-Foot Orthosis
KAFU	Ganzbeinorthese
ко	Knee Orthosis
	Knieorthese
AFO	Ankle-Foot Orthosis
	Unterschenkelorthese
FO	Foot Orthosis
	Fußorthese




Articulation de la cheville librement mobile	 Quand des faux mouvements latéraux doivent être stabilisés Quand une partie du pied n'a que la tâche de maintenir l'orthèse dans la bonne position En déplaçant vers l'avant une articulation de la cheville librement mobile, on obtient un effet de sécurisation du genou (effet plus doux qu'avec une butée d'extension dorsale) 	
Articulation de la cheville librement mobile avec butées d'extension dorsale	 Contrôle du mouvement, éviter les mouvements douloureux Contrôle des articulations voisines, par ex. genou (butée d'extension dorsale) 	
Articulation fixe de la cheville	 Quand l'articulation tibio-tarsienne est raidie Meilleure cosmétique et moins de poids Axe articulaire non physiologique qui ne répond pas aux critères d'une articulation mécanique 	
Articulation redresseuse du pied	 En cas de faiblesse du redresseur du pied Pour redresser une position de pied équin⁴ 	

Aides à la construction en tech	nnologie orthétique
Problème:	Solution:
L'orthèse glisse	 La suspendre à l'arrondi du muscle Utiliser des coupures postérieures, ex. coulisse de Bisgaard Contrefort dorsal au dos du pied, chaussures adaptées
Tendance à l'oedème, «oedème fenêtre»	 «Emballer» sur la plus grande surface possible Éventuellement avec des rabats Soins de compression avec tricotage à plat
La construction n'est pas stable à la rotation	 Orientation des fibres? Stabilité à la rotation avec un plus grand enveloppement (attention au début)
Le point de rotation mécanique ne joue pas (déplacement des parties molles au niveau du talon)	 Die Dicke der Fersenhaut beträgt durchschnittlich 18-19 mm Die Fußsohle verformt sich bei Belastung progressiv Der Dämpfungsweg beträgt bis zu 12 mm Vorsicht bei umbelasteten Gipsabdrücken !

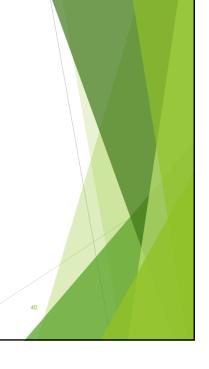
Technologie orthétique et «électronique»

- ► CPM = Continued passive Motion = «Orthèse du mouvement moteur»
- Articulations mécaniques, contrôlées électroniquement, exemple du genou, E-Mag-Active (phase oscillante libre et phase d'appui bloquée):

Pendant la marche, un système intelligent de senseurs mesure la position de la jambe et déclenche en conséquence l'articulation de l'orthèse. L'articulation du genou est donc automatiquement ouverte pendant la marche: la jambe peut osciller complètement. Grâce à la fonction PreLock, votre articulation du genou est déjà assurée pour la phase d'appui, même si le patient n'a pas encore atteint la pleine extension de la jambe.

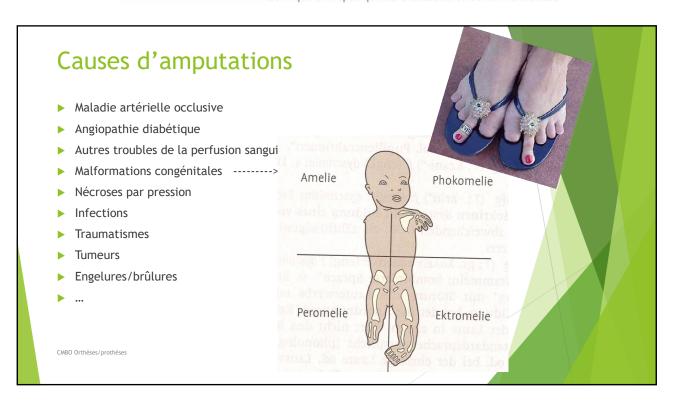
 Électrostimulation fonctionnelle favorise la reconstitution de la musculature, de la mobilité de l'articulation et de l'irrigation sanguine

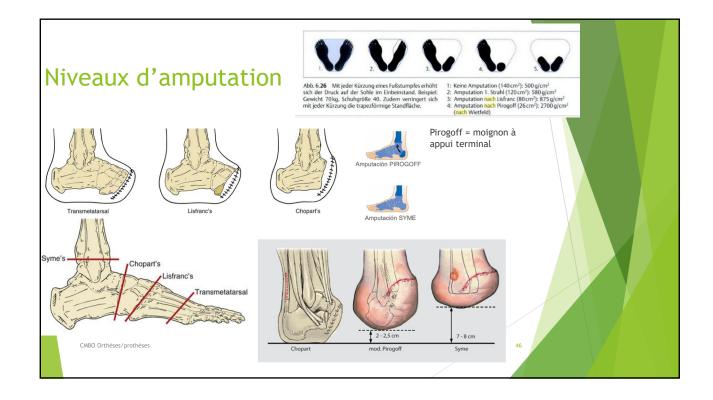
Si un nerf intact ne reçoit plus de signal du système nerveux central (SNC), il doit alors être possible de générer artificiellement l'impulsion sur le nerf! C'est à cette conclusion que sont parvenus des chercheurs - et ils ont développé l'électrostimulation fonctionnelle (ESF) pour le corps. L'ESF est le soin le plus avancé dans le domaine de la neuro-réhabilitation. MyGait (Otto Bock) est par exemple un stimulateur superficiel qui stimule le nerf de l'extérieur en cas de faiblesse du releveur du pied. Le nerf transmet finalement le signal au muscle - et vous vous déplacez.


Ne pas oublier des chaussures adaptées...

- Une modification des chaussures est-elle nécessaire?
- Commander une chaussure orthétique? Aspect (Zbinden)? Perpedes? ...?
- Ou la chaussure peut-elle même assumer la fonction d'orthèse?
 Exemple: Position de pied équin

CMBO Orthèses/prothèses

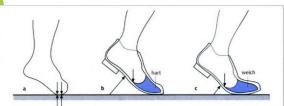




Questions de répétition de ma part... © • Quels sont les inconvénients de dispositifs étendus dans une orthèse? • Comment puis-je prévenir une thrombose sur une jambe paralysée? • Citez trois possibilités d'obtenir une fonction de releveur du pied: • Que signifie l'acronyme DAFO? • Citez des exemples d'orthèses de compensation • Comment définit-on le point de rotation de l'articulation tibio-tarsienne?

Prothèses du pied

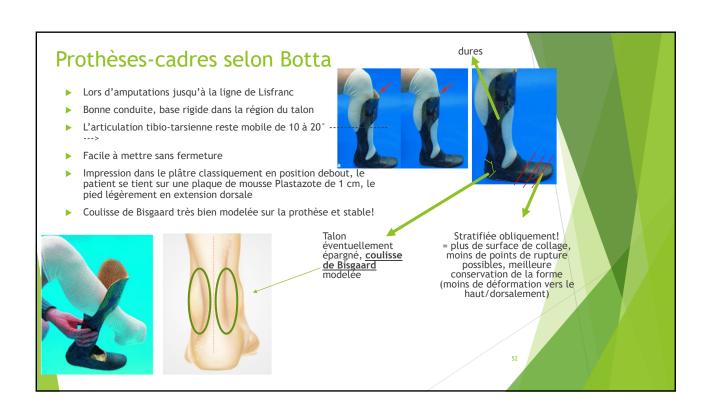
Niveau d'amputation	Conséquences	
Amputation des orteils	 Le vide est «comblé» par positionnement en vagus/varus des autres orteils, mais il ne peut guère être caché (même avec un support de substitution ou dispositif similaire). Les autres orteils et l'articulation tibio-tarsienne subissent une charge supplémentaire. 	
Amputations du médio- tarse (Sharp, Sharp-Jäger, Lisfranc, Bona-Jäger, Chopart)	 Perte de la position zéro («pseudo-supination») Plus de voûte plantaire (la surface capitonnée des métatarses est absente) La perte du gros orteil ne permet plus de relever le centre de gravité du corps Des insertions de muscles sont perdues - risque de malpositions! Des os marginaux (naviculaire, cuboïde) peuvent se déplacer sous la traction des tendons 	
Amputations de l'arrière- pied (dans la région de la racine du pied) (Pirogoff, Syme, Chopart)	 Rarement traitées avec des prothèses courtes. En cas de charge, le talon entrerait en supination et il en résulterait un pied équin (perturbation de l'équilibre musculaire) Si les extrémités des moignons ne peuvent pas être chargées ou ne peuvent être chargées que partiellement, un soutien est nécessaire sous les condyles du tibia. 	
CMBO Orthèses/prothèses	47	


Lits plantaires, travaux sur les semelles des chaussures, épithèses cosmétiques	Amputations des orteils	
Prothèses courtes (sans la cheville)	Amputations du médio-tarse, en fonction de la classe de mobilité, avec des éléments couvrant les malléoles	
Prothèses couvrant les malléoles	Pour moignons de Chopart et similaires	
«Prothèses longues»	Avec pied artificiel, par ex. après amputation de Syme	

Éléments de construction Amputation du médio-tars

- Pour éviter la surcharge, répartir à chaque fois la charge si possible sur la totalité de la surface de la semelle <u>Appuis</u>: préservation de la voûte plantaire résiduelle: soutenir le sustentalculum tali, appui de la voûte transversale = décharge de la pointe du moignon
- Maintenir la fonction de la cheville (sécurité du genou!), mettre le pied en position de «pseudo-pied bot talus» (le patient peut encore faire une extension dorsale de 10 à 15°) et veiller à une «pseudo-supination» en cas d'amputation trans-métatarsienne (appui médial et bord latéral élevé comme contre-appui)
- Amortissement du choc d'entrée car le Heel-Rocker n'est plus complet
- Renforcement de la semelle: Espace libre entre moignon et partie rigide de la semelle (capitonnage épais) pour éviter toute pression sur l'extrémité du moignon lors du déroulement, si un renforcement complet n'est pas nécessaire, si possible à 90° de la direction de marche ou en harmonie avec l'autre côté
- <u>Avant-pied plutôt dur</u> (devenant progressivement plus mou): démarche harmonieuse, nécessite plus de force pour les patients actifs qui peuvent charger l'extrémité du moignon
- Avant-pied plutôt mou: démarche plus mauvaise (pas plus courts), plus grande sécurité de la marche, avec décharge du moignon

Abb. 6.37a-c


- a Ein gut gerundeter und gepolsterter Stumpf ist für den Barfußgang geeignet.
 b Bei steifem Vorfußersatz und Sohle muss der Stumpf
- b Bei steifem Vorfußersatz und Sohle muss der Stumpf über den "Berg" der Prothese steigen. Dadurch erhöht sich der Druck auf die Stumpfspitze. Es entsteht ein symmetrischeres Gangbild; geeignet für junge, kräftige Amputierte.
- c Bei empfindlichen Stümpfen oder allgemein reduzierter Kraft ist die Stumpfspitze ebenfalls starr und exakt einzubetten. Der Vorfußersatz besteht jedoch aus weichem Material. Cang kurzschrittiger, jedoch schonender und sicherer, besonders bei geriatrischen Patienten.

Prothèse de Bellmann

- ▶ Pour amputations courtes du médio-tarse
- Le pied a un contact plein avec l'appui médial et le bord
- ▶ Enveloppement exact, rigide au-dessus du talon
- ▶ Capitonnage de 1 cm à la pointe du moignon, ensuite éve
- Chez les patients actifs: rabat antérieur (plus il est haut, moins le talon glisse)

Fonction:

- tige interne flexible dans laquelle le moignon est déchargé et inséré de façon optimale.
- modélisation spéciale = bonne adhérence au moignon, par ex. avec Erkoflex (souvent sans chaussettes)
- la mobilité de l'articulation tibio-tarsienne et astragalo-calcanéenne reste complètement libre.
- facile à résoudre sur le plan cosmétique, utilisable dans de nombreuses chaussures et en partie aussi pieds nus.
- garder éventuellement le moignon dans un cadre en carbone rigide à la torsion. Cette const<mark>ruction</mark> permet une bonne conduite de la prothèse sans formation de points de pression à l'extrém<mark>ité du moignon.</mark>
- ici aussi, à la fin de la phase de poussée, il y a un repli des orteils.
- Inconvénients: ajustements fréquents lors de premières applications, prothèses en silicone souvent trop lourdes.
- http://bellmann.ch/vorfussprothesen/

Combinaisons de moyens auxiliaires

- Compléter les prothèses de l'avant-pied lors d'augmentation de la charge (par ex. en sport) avec une orthèse du releveur du pied (de confection ou sur mesure):
- ▶ Prothèse de Bellmann avec tige de la jambe amovible ----->
- Ne pas oublier la barre de déroulement et l'amortisseur
- L'autre côté est maintenant chargé nettement davantage, une fourniture est généralement indiquée là aussi!
- http://geb.uni-giessen.de/geb/volltexte/2004/1615/pdf/LaserichDirk-2004-01-12.pdf
- https://books.google.ch/books?id=UOjQ3dbIWTMC&pg=PA132&lpg=PA132&dq=prothese+nach+botta&source=bl&ots=\$_\$\text{UVP}\$ \times 20Sf&sig=9tV2vxlOJFCFFYaP9aajS5jzaCl&hl=de&sa=X&ved=OahUKEwj1to3xhZDcAhWrNOwKHd45DZoQ6AEIYDAG#v=odspaces rothese%20nach%20botta&f=false

CMBO Orthèses/prothèses

Prothèses avec pied artificiel

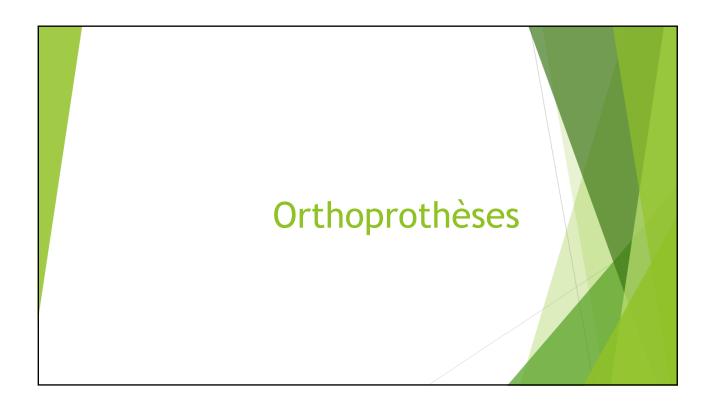
- Ex. pied avec lame en carbone d'Otto Bock: https://www.ottobock.de/prothetik/produkte-a-bis-z/prothesenfuesse/prothesenfuss-prosymes-1c20
- Vis d'ajustage pour «essayer» la position exacte avec adaptateur pyramidal

Prothesenfuß 1C20 ProSymes

Justierbarer Prothesenfuß für Symes-Amputierte

Nach einer Amputation wünschen sich Patienten eine prothetische Versorgung, die ihnen neben einer hohen Funktionalität auch eine perfekte Einstellung ihrer Fußposition garantlert. Für Patienten mit einer Amputation nach der Methode des schottischen Chirurgen James Syme haben wir den Prothesenfuß ProSymes 1C20 mit einer einzigartigen Aufbau- und Anwendungstechnik entwickelt. Sein spezielles Justlerkonzept erlaubt nämlich die Korrektur der Fußposition während der Anprobe und sogar nach der Fertigstellung der Prothese. Der ProSymes 1C20 ist geeignet für Symes-Amputierte, die einen zuverlässigen und dynamischen Prothesenfuß mit exzellenter Fersenfederung benötigen.

Bezüglich einer unauffälligen, optisch ansprechenden Fußkosmetik berät Sie gern Ihr Orthopädiefachmann.



Questions de répétition de ma part... © Quels peuvent être les désavantages d'une prothèse courte (donc avec articulation tibio-tarsienne libre)? Quelle perte de taille une amputation de Syme entraîne-t-elle en général? Pourquoi faut-il veiller à avoir des surfaces de collage obliques dans une construction de l'avant-pied? Pourquoi, chez les amputés de l'avant-pied, doit-il y avoir un renforcement de la coque qui entoure légèrement le moignon? Un avant-pied mou a-t-il pour conséquence des pas longs ou courts? Comment peut-on bien combiner des matériaux stables à longue durée de vie avec des matériaux mous lors d'un remplacement de l'avant-pied?

	Vocabulaire SACH	Solid ankle cussion heel
	Prothèse avec éléments modulables Prothèse en style de coque	donc réglable avec tuyau, adaptateur La «cosmétique» est l'élément porteur, pas de possibilité de réglage
Ch	noisir les éléments modulables: Pour une utilisation permanente ou simp	plement pour le premier réglage
**	en fonction du degré de mobilité et du p du montage> À «façon», modulaire ou en style de coq Prix (selon l'organe payeur)	poids du patient, de la fonctionnalité et de la hauteur

Construction de base

- ▶ Fabriquer l'orthoprothèse
- ► Au-dessous du moignon (ou du talon), faire une surface de mousse et appliquer l'adaptateur (résine de scellement,...).
 - = phase de test, éventuellement repositionner plusieurs fois (essayage statique).

Chaque (ortho-)prothèse est construite en trois dimensions (A-P; M-L, verticale) selon des critères définis. Toutes les forces sont transmises par la surface de contact moignon-tige. Elle doit être statiquement sûre et dynamiquement fonctionnelle.

<u>Sagittalement</u>: En partant du grand trochanter, la verticale passe par l'axe de rotation de compromis au niveau du genou, puis dans un rapport d'environ 50:50 par la tige de la prothèse jusqu'à la partie adaptée au pied (selon les données de fabrication, avant-pied environ 70%; arrière-pied 30% (sur le talon de la chaussure)

<u>Frontalement</u>: La partie adaptée au pied en légère rotation vers l'extérieur (genou et côté opposé comme repère), ajustée sur le talon de la chaussure, construite à la verticale (éventuellement avec une légère latéralisation)

- Couler
- Fixer les parties adaptées, essayage dynamique avec possibilités de réglage
- Finition, cosmétique.

Déplacement vers l'avant de la partie adaptée au pied	Sécurité du genou lorsque le patient vient trop tôt en flexion du genou
Déplacement vers l'arrière de la partie adaptée au pied	La sécurité du genou en souffre Lorsque le patient bascule en recurvatum*
Déplacer la partie adaptée au pied en direction médiale	Il se produit un moment de bascule latérale dans la région de la tige (augmentation de la pression dans la région de la tige)
Déplacer la partie adaptée au pied en direction latérale	Marche à large écartement = sécurité
Flexion plantaire du pied	Un contact complet du pied plus rapide est obtenu, comme si l'avant-pied était plus «dur»
Extension dorsale du pied	Déroulement plus léger, comme si l'avant-pied était plus «souple», si le patient reste en suspens avec la pointe du pied ou doit passer «par-dessus la montagne»
*Le recurvatum peut aussi êt	re produit par un faux réglage du talon
CMBO Orthèses/prothèses	63

